Katie Everett
I am a Research Engineer at Google DeepMind where I work on understanding and improving training dynamics and parameterization in large-scale neural networks. My past research focused on reasoning by learning over discrete, compositional structures and on generalization through information-theoretic approaches. I was also the technical lead for the Open COVID-19 Data project at Google and worked on the Google COVID-19 Symptoms Search dataset launch featured in the Washington Post and Google Keynote.
I am also a PhD Candidate in Electrical Engineering and Computer Science at MIT. Prior to my time at Google, I co-founded a startup called Chorus. I completed my M.Eng. in electrical engineering and computer science and my B.S. with a double major in computer science and mathematics, both at MIT.
Publications
- Scaling Exponents Across Parameterizations and Optimizers
Katie Everett, Lechao Xiao, Mitchell Wortsman, Alexander A. Alemi, Roman Novak, Peter J. Liu, Izzeddin Gur, Jascha Sohl-Dickstein, Leslie Pack Kaelbling, Jaehoon Lee, and Jeffrey Pennington
International Conference on Machine Learning (ICML) 2024 - Small-scale proxies for large-scale Transformer training instabilities
Mitchell Wortsman, Peter J. Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D. Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington, Jascha Sohl-Dickstein, Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon Kornblith
International Conference on Learning Representations (ICLR) 2024
Oral presentation - Nonparametric partial disentanglement via mechanism sparsity: Sparse actions, interventions and sparse temporal dependencies
Sébastien Lachapelle, Pau Rodríguez López, Yash Sharma, Katie Everett, Rémi Le Priol, Alexandre Lacoste, and Simon Lacoste-Julien
Preprint (2024) - GFlowNet-EM for learning compositional latent variable models
Edward J. Hu, Nikolay Malkin, Moksh Jain, Katie Everett, Alexandros Graikos, and Yoshua Bengio
International Conference on Machine Learning (ICML) 2023 - GFlowNets and variational inference
Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward Hu, Katie Everett, Dinghuai Zhang, and Yoshua Bengio International Conference on Learning Representations (ICLR) 2023 - Disentanglement via Mechanism Sparsity Regularization: A New Principle for Nonlinear ICA
Sébastien Lachapelle, Pau Rodríguez López, Yash Sharma, Katie Everett, Rémi Le Priol, Alexandre Lacoste, and Simon Lacoste-Julien
Conference on Causal Learning and Reasoning (CLeaR) 2022 - Google COVID-19 search trends symptoms dataset
Shailesh Bavadekar, Andrew Dai, John Davis, Damien Desfontaines, Ilya Eckstein, Katie Everett, Alex Fabrikant, Gerardo Flores, Evgeniy Gabrilovich, Krishna Gadepalli, Shane Glass, Rayman Huang, Chaitanya Kamath, Dennis Kraft, Akim Kumok, Hinali Marfatia, Yael Mayer, Benjamin Miller, Adam Pearce, Irippuge Milinda Perera, Venky Ramachandran, Karthik Raman, Thomas Roessler, Izhak Shafran, Tomer Shekel, Charlotte Stanton, Jacob Stimes, Mimi Sun, Gregory Wellenius, and Masrour Zoghi
Preprint (2020) - Cycles in Causal Learning
Katie Everett and Ian Fischer
ICLR Workshop on Causal Learning for Decision Making 2020